前面通过几篇文章,解释并实践了一下 Hessian 的序列化协议。文章目录如下:
Hessian 2.0 序列化协议(中文版) — Hessian 序列化协议的中文翻译版。根据后面的“协议解释与实战”系列文章,增加了协议内容错误提示。
Hessian 协议解释与实战(一):布尔、日期、浮点数与整数 — 介绍布尔型数据、日期类型、浮点类型数据和整数类型数据等四种类型的数据的处理。
Hessian 协议解释与实战(二):长整型、二进制数据与 Null — 介绍长整数类型数据、二进制数据和 null 等三种类型的数据的处理。
Hessian 协议解释与实战(三):字符串 — 专门介绍了关于字符串的处理。由于字符串需要铺垫的基础知识比较多,处理细节也有繁琐,所以单独成篇来介绍。
Hessian 源码分析(Java) — 开始第四篇分析之前,先来介绍一下 Hessian 的源码实现。方便后续展开说明。
Hessian 协议解释与实战(四):数组与集合 — 铺垫了一些关于实例对象的处理,重点介绍关于数组和集合的相关处理。
Hessian 协议解释与实战(五):对象与映射 — 重点介绍关于对象与映射的相关处理。
Hessian、Msgpack 和 JSON 实例对比 — 用实例对比 JSON、Hessian 和 MessagePack 的区别。
Avro、ProtoBuf、Thrift 的模式演进之路 — 翻译的 Martin Kleppmann 的文章,重点对比了 Avro、ProtoBuf、Thrift 的序列化处理思路。
该系列第四篇文章准备详细介绍一下 Hessian 对对象、链表以及 Map 等处理。但是,越调试代码,越发觉得应该先对 Hessian 的实现做一个源码分析。于是,就有了本文。
这里有几点需要声明一下:
在上面“解释与实战”系列文章中提到的代码就不再重复说明。
通过“解释与实战”系列文章,大家应该可以领略到,处理序列化有大量的细节。但是,本文并不打算涉及。本文重点是介绍 Hessian 的 Java 实现的架构蓝图。相当于给指明一条路,沿着这条路,大家就可以探索 Hessian 的各种细节。
本文的介绍,全部基于 Hessian 4.0.60 的源码。由于没有找到 Hessian 的仓库,D瓜哥从 Hessian 的网站下,下载了源码包,解压后发布在了 GitHub 上: Hessian — The source code of Hessian Library.。
前段时间,翻译了 Hessian 2.0 的序列化协议,发布在了 Hessian 2.0 序列化协议(中文版)。但是,其中有很多言语不详之处。所以,接下来会用几篇文章来详细解释并实践一下 Hessian 序列化协议,以求做到知其然知其所以然。目录如下:
Hessian 2.0 序列化协议(中文版) — Hessian 序列化协议的中文翻译版。根据后面的“协议解释与实战”系列文章,增加了协议内容错误提示。
Hessian 协议解释与实战(一):布尔、日期、浮点数与整数 — 介绍布尔型数据、日期类型、浮点类型数据和整数类型数据等四种类型的数据的处理。
Hessian 协议解释与实战(二):长整型、二进制数据与 Null — 介绍长整数类型数据、二进制数据和 null 等三种类型的数据的处理。
Hessian 协议解释与实战(三):字符串 — 专门介绍了关于字符串的处理。由于字符串需要铺垫的基础知识比较多,处理细节也有繁琐,所以单独成篇来介绍。
Hessian 源码分析(Java) — 开始第四篇分析之前,先来介绍一下 Hessian 的源码实现。方便后续展开说明。
Hessian 协议解释与实战(四):数组与集合 — 铺垫了一些关于实例对象的处理,重点介绍关于数组和集合的相关处理。
Hessian 协议解释与实战(五):对象与映射 — 重点介绍关于对象与映射的相关处理。
Hessian、Msgpack 和 JSON 实例对比 — 用实例对比 JSON、Hessian 和 MessagePack 的区别。
Avro、ProtoBuf、Thrift 的模式演进之路 — 翻译的 Martin Kleppmann 的文章,重点对比了 Avro、ProtoBuf、Thrift 的序列化处理思路。
在上一篇文章 Hessian 协议解释与实战(二):长整型、二进制数据与 Null 中研究了长整型、二进制数据与 null 等三种数据类型的处理方式。接下来,我们再来介绍字符串的处理情况。
前段时间,翻译了 Hessian 2.0 的序列化协议,发布在了 Hessian 2.0 序列化协议(中文版)。但是,其中有很多言语不详之处。所以,接下来会用几篇文章来详细解释并实践一下 Hessian 序列化协议,以求做到知其然知其所以然。目录如下:
Hessian 2.0 序列化协议(中文版) — Hessian 序列化协议的中文翻译版。根据后面的“协议解释与实战”系列文章,增加了协议内容错误提示。
Hessian 协议解释与实战(一):布尔、日期、浮点数与整数 — 介绍布尔型数据、日期类型、浮点类型数据和整数类型数据等四种类型的数据的处理。
Hessian 协议解释与实战(二):长整型、二进制数据与 Null — 介绍长整数类型数据、二进制数据和 null 等三种类型的数据的处理。
Hessian 协议解释与实战(三):字符串 — 专门介绍了关于字符串的处理。由于字符串需要铺垫的基础知识比较多,处理细节也有繁琐,所以单独成篇来介绍。
Hessian 源码分析(Java) — 开始第四篇分析之前,先来介绍一下 Hessian 的源码实现。方便后续展开说明。
Hessian 协议解释与实战(四):数组与集合 — 铺垫了一些关于实例对象的处理,重点介绍关于数组和集合的相关处理。
Hessian 协议解释与实战(五):对象与映射 — 重点介绍关于对象与映射的相关处理。
Hessian、Msgpack 和 JSON 实例对比 — 用实例对比 JSON、Hessian 和 MessagePack 的区别。
Avro、ProtoBuf、Thrift 的模式演进之路 — 翻译的 Martin Kleppmann 的文章,重点对比了 Avro、ProtoBuf、Thrift 的序列化处理思路。
在上一篇文章 Hessian 协议解释与实战(一) 中研究了布尔型数据、日期类型、浮点类型数据、整数类型数据等四种数据类型的处理方式。接下来,我们再来介绍长整数类型数据、二进制数据和 null 的处理情况。
基础工具方法 基础工具方法就不再赘述,请直接参考 Hessian 协议解释与实战(一):布尔、日期、浮点数与整数:基础工具方法 中提到的几个方法。
前段时间,翻译了 Hessian 2.0 的序列化协议,发布在了 Hessian 2.0 序列化协议(中文版)。但是,其中有很多言语不详之处。所以,接下来会用几篇文章来详细解释并实践一下 Hessian 序列化协议,以求做到知其然知其所以然。
目录如下:
Hessian 2.0 序列化协议(中文版) — Hessian 序列化协议的中文翻译版。根据后面的“协议解释与实战”系列文章,增加了协议内容错误提示。
Hessian 协议解释与实战(一):布尔、日期、浮点数与整数 — 介绍布尔型数据、日期类型、浮点类型数据和整数类型数据等四种类型的数据的处理。
Hessian 协议解释与实战(二):长整型、二进制数据与 Null — 介绍长整数类型数据、二进制数据和 null 等三种类型的数据的处理。
Hessian 协议解释与实战(三):字符串 — 专门介绍了关于字符串的处理。由于字符串需要铺垫的基础知识比较多,处理细节也有繁琐,所以单独成篇来介绍。
Hessian 源码分析(Java) — 开始第四篇分析之前,先来介绍一下 Hessian 的源码实现。方便后续展开说明。
Hessian 协议解释与实战(四):数组与集合 — 铺垫了一些关于实例对象的处理,重点介绍关于数组和集合的相关处理。
Hessian 协议解释与实战(五):对象与映射 — 重点介绍关于对象与映射的相关处理。
Hessian、Msgpack 和 JSON 实例对比 — 用实例对比 JSON、Hessian 和 MessagePack 的区别。
Avro、ProtoBuf、Thrift 的模式演进之路 — 翻译的 Martin Kleppmann 的文章,重点对比了 Avro、ProtoBuf、Thrift 的序列化处理思路。
基础工具方法 Hessian 序列化之后的数据,都是字节数组,为了方便查看字节数组的二进制形式和十六进制形式,在正式开始之前,先介绍一下期间用到的辅助工具方法。闲言少叙,直接上代码:
/** * 创建 Hessian2Output 对象,以便用于序列化 * * @author D瓜哥 · https://www.diguage.com/ */ private Hessian2Output getHessian2Output(OutputStream stream) { SerializerFactory serializerFactory = new SerializerFactory(); serializerFactory.setAllowNonSerializable(true); Hessian2Output result = new Hessian2Output(stream); result.setSerializerFactory(serializerFactory); return result; } /** * 打印字节数组 * * @author D瓜哥 · https://www.diguage.com/ */ private void printBytes(byte[] result) { for (byte b : result) { String bitx = Integer.toBinaryString(Byte.toUnsignedInt(b)); String zbits = String.format("%8s", bitx).replace(' ', '0'); if (0 <= b) { System.out.printf("%4d 0x%02X %8s %c %n", b, b, zbits, b); } else { System.out.printf("%4d 0x%02X %8s %n", b, b, zbits); } } } /** * 将 long 转化成二进制字符串(前面补0) * * @author D瓜哥 · https://www.diguage.com/ */ private String getBinaryString(long value) { String bits = Long.toBinaryString(value); char[] chars = String.format("%64s", bits) .replace(' ', '0').toCharArray(); StringBuilder result = new StringBuilder(64 + 7); for (int i = 0; i < chars.length; i++) { result.append(chars[i]); if (i % 8 == 7 && i != chars.length - 1) { result.append(","); } } return result.toString(); } /** * 将 int 转化成二进制字符串(前面补0) * * @author D瓜哥 · https://www.diguage.com/ */ private String getBinaryString(int value) { String bits = Integer.toBinaryString(value); char[] chars = String.format("%32s", bits) .replace(' ', '0').toCharArray(); StringBuilder result = new StringBuilder(64 + 7); for (int i = 0; i < chars.length; i++) { result.append(chars[i]); if (i % 8 == 7 && i != chars.length - 1) { result.append(","); } } return result.toString(); }
公司在微服务系统中,序列化协议大多数使用 MessagePack。但是,由于 MessagePack 设计限制,导致微服务接口在增减参数时,只能在最后操作。但是,由于个人操作,难免失误,结果造成因为增减字段导致的事故层出不穷。最近,一些条件成熟,准备推动部门将序列化协议切换到 Hessian。
原以为,切换到 Hessian 就可以万事大吉。但是,在和同事的沟通中发现,同事反馈,Hessian 本身也有一些限制。为了对 Hessian 有一个更深入的了解,干脆就把 Hessian 序列化协议读一遍。看协议,文字不多,干脆就把协议完整翻译一遍。闲言少叙,正文开始。
Hessian 2.0 序列化协议 协议解释 针对该协议有很多言语不详,甚至模糊不清之处,专门做了一些解释和实践,叙述系列文章,用于辅助消化理解。目录如下:
Hessian 2.0 序列化协议(中文版) — Hessian 序列化协议的中文翻译版。根据后面的“协议解释与实战”系列文章,增加了协议内容错误提示。
Hessian 协议解释与实战(一):布尔、日期、浮点数与整数 — 介绍布尔型数据、日期类型、浮点类型数据和整数类型数据等四种类型的数据的处理。
Hessian 协议解释与实战(二):长整型、二进制数据与 Null — 介绍长整数类型数据、二进制数据和 null 等三种类型的数据的处理。
Hessian 协议解释与实战(三):字符串 — 专门介绍了关于字符串的处理。由于字符串需要铺垫的基础知识比较多,处理细节也有繁琐,所以单独成篇来介绍。
Hessian 源码分析(Java) — 开始第四篇分析之前,先来介绍一下 Hessian 的源码实现。方便后续展开说明。
Hessian 协议解释与实战(四):数组与集合 — 铺垫了一些关于实例对象的处理,重点介绍关于数组和集合的相关处理。
Hessian 协议解释与实战(五):对象与映射 — 重点介绍关于对象与映射的相关处理。
Hessian、Msgpack 和 JSON 实例对比 — 用实例对比 JSON、Hessian 和 MessagePack 的区别。
Avro、ProtoBuf、Thrift 的模式演进之路 — 翻译的 Martin Kleppmann 的文章,重点对比了 Avro、ProtoBuf、Thrift 的序列化处理思路。
加入公司以来,参与了很多个项目的开发维护;也排查处理过很多线上问题;为了写 Mock 测试,也专门去日志系统上扒拉过不少日志等等。在整个过程中,对日志的认识有了不少更深刻的认识和体会。也发现不少问题。这里先从存在的问题展开论述。
日志存在的问题 从个人的眼光上来看,当前的系统存在如下问题:
必要日志没有打印出来,导致在追踪问题或测试代码时,带来不必要的麻烦。比如查看一个接口的返回值用于 Mock 测试;再比如 RPC 调用报错,返回值以及错误信息没有打印到日志中,不知道具体错误原因是什么。
日志抽取中日志路径配置错误,导致日志重复收集,带来不必要的处理和存储成本。
日志代码不规范,导致不必要的性能消耗;或者大促时,日志降级不生效。
日志框架繁多,造成造成冲突,遗漏部分日志。
日志配置不规范,不利于日志的采集和清洗。
日志和调用链路物理隔离,查看一个请求的整个调用链路上的日志非常不方便,不利于问题的快速排查和定位。
大家的系统中,存在什么样的日志问题?欢迎留言交流讨论。
针对这些问题,我觉得有些地方值得发力一下。然后,做了一些探索,总结一下,以备后续使用。
日志最佳实践探索 对于日志的使用,相信所有的开发人员都比较清楚,网上也有大量资料,相关日志框架的官方文档,也写的非常详尽,这里就不再赘述。
本文从一个角度对日志规范进行探究:在排查问题时,能否通过日志来尽快地了解系统运行状态,定位问题原因?另外,由于 Java 的日志框架特别多,有一些比较容易迷惑的问题,尝试做出一点总结。
系统运行后,不严格地说,再去观察系统运行状态,就类似于在黑夜中行走。此时,向你扔过来一块板砖🧱,那么,事后如何追责呢?
请问:你能否成功躲开这块叫做 Bug 的板砖🧱?
日志用来记录用户操作、系统运行状态等,是一个系统的重要组成部分。然而,由于日志通常不属于系统的核心功能,但是在日志对于排查问题,有无可替代的作用,理应得到所有开发人员的重视(不重视,怎么甩锅?!)!
If dog is a man’s best friend, logs are software engineer’s best friend.
— Geshan Manandhar Logging best practices 好的日志可以帮助系统的开发和运维人员:
了解线上系统的运行状态
快速准确定位线上问题
发现系统瓶颈
预警系统潜在风险
挖掘产品最大价值
可以将一个流程完整串起来(比如orderId)
……
不好的日志导致:
对系统的运行状态一知半解,甚至一无所知
系统出现问题无法定位,或者需要花费巨大的时间和精力
无法发现系统瓶颈,不知优化从何做起
无法基于日志对系统运行过程中的错误和潜在风险进行监控和报警
对挖掘用户行为和提升产品价值毫无帮助
……
在上一篇文章中,通过阅读 《In Search of an Understandable Consensus Algorithm》 前三节的内容,对论文的大致内容做了简介,简单说明了一下 Replicated state machines 的用途以及 Paxos 本身存在的问题。
4. Designing for understandability several goals in designing Raft:
it must providea complete and practical foundation for system building;
it must be safe under all conditions and available under typical operating conditions;
it must be efficient for common operations.
Our most important goal — and most difficult challenge — was understandability.
从这里可以看出,Raft 设计的初衷就是为了易于理解和便于构建。
There were numerous points in the design of Raft where we had to choose among alternative approaches. In these situations we evaluated the alternatives based on understandability.
前一段时间,在一次开组会的时候,给小组成员简单介绍了一下 Raft 协议。大概四年前读过 Raft 的论文,这次分享的时候,好多好多细节都忘了。所以,再次把 《In Search of an Understandable Consensus Algorithm》 这篇论文找出来,重读一遍,做个笔记和摘要,方便后续学习和复习。
Abstract Raft is a consensus algorithm for managing a replicated log. 开篇摘要就点出了 Raft 的特点: Raft 是一种管理复制日志的共识算法。
In order to enhance understandability, Raft separates the key elements of consensus, such as leader election, log replication, and safety, and it enforcesa stronger degree of coherency to reduce the number of states that must be considered. 为了增强可理解性,Raft 将共识分解成几个关键元素,例如 Leader 选举,日志复制,以及安全性等;同时,为了降低需要考虑的状态的数量,还强制实施了更强的一致性。
1. Introduction Consensus algorithms allow a collection of machines to work as a coherent group that can survive the failures of some of its members.
D瓜哥经常关注 Spring 的 PR 与 Issue。在众多 Contributor 中,除了 Spring 团队成员之外,我对 stsypanov (Сергей Цыпанов) 印象很深刻。这哥们给 Spring 提了非常多的 PR,请看列表 Pull requests · spring-projects/spring-framework,而且这个哥们的 PR 都非常有特点,绝大部分是性能提升方面的 PR,而且还会给出 JMH 的测试结果。不愧是毛熊人,做事细致严谨。
这周心血来潮,把这哥们的 PR 翻一翻,希望可以学习一些编码技巧。简单记录一下,以备以后回顾学习。
提高 Map 的遍历性能 请看: SPR-17074 Replace iteration over Map::keySet with Map::entrySet by stsypanov · Pull Request #1891
摘取一个示例如下:
// --before update------------------------------------------------------ for (String attributeName : attributes.keySet()) { Object value = attributes.get(attributeName); // --after update------------------------------------------------------- for (Map.Entry<String, Object> attributeEntry : attributes.entrySet()) { String attributeName = attributeEntry.getKey(); Object value = attributeEntry.getValue(); 这个改动很小,但是对性能的改善还是比较显著的。翻看自己项目的代码,还是有不少是改动前的写法。
针对这点,D瓜哥也给 Spring 发了一个 PR: Improve performance of iteration in GroovyBeanDefinitionReader by diguage · Pull Request #27100。相信不久就会合并到 main 分支的。
所以,给 Spring 以及其他开源项目提 PR,其实一点也不难。只要,你花心思去研究,肯定有机会的。不过,也反思一点:我这个 PR 有点东施效颦的感觉,有点刷 KPI 的样子。还是应该脚踏实地去好好研究,提更多更有建设性意见的 PR。
Spring AOP 源码分析:入门 中,梳理出来了 Spring AOP 的入口。 Spring AOP 源码分析:获得通知 中着重介绍了如何获取通知。上一篇文章 Spring AOP 源码分析:创建代理(一) 重点介绍了一下切面链的组装和基于 JDK 动态代理的 AOP 的实现,这篇文章介绍一下基于 cglib 的代理类是生成。
cglib 简介 CGLIB(Code Generator Library)是一个高性能的代码生成库,被广泛应用于 AOP 框架(Spring)中以提供方法拦截功能,主要以继承目标类的方式来进行拦截实现,因此 CGLIB 可以对无接口的类进行代理。
CGLIB代理主要通过操作字节码的方式为对象引入方法调用时访问操作,底层使用了ASM来操作字节码生成新的类,ASM是一个短小精悍的字节码操作框架。CGLIB的应用栈如下:
最新版的 Hibernate 已经把字节码库从 cglib 切换为 Byte Buddy。
JDK 动态代理是通过实现 InvocationHandler 接口,在其 invoke 方法中添加切面逻辑。而 cglib 则是通过实现 MethodInterceptor 接口,在其 invoke 方法中添加切面逻辑。
下面看一下在 Spring 中,是如何实现利用 cglib 来实现 AOP 编程的?
CglibAopProxy 先看一下创建代理对象的方法:
CglibAopProxy#getProxy(ClassLoader) @Override public Object getProxy(@Nullable ClassLoader classLoader) { if (logger.isTraceEnabled()) { logger.trace("Creating CGLIB proxy: " + this.advised.getTargetSource()); } try { Class<?> rootClass = this.advised.getTargetClass(); Assert.state(rootClass != null, "Target class must be available for creating a CGLIB proxy"); Class<?> proxySuperClass = rootClass; if (rootClass.getName().contains(ClassUtils.CGLIB_CLASS_SEPARATOR)) { proxySuperClass = rootClass.getSuperclass(); Class<?>[] additionalInterfaces = rootClass.getInterfaces(); for (Class<?> additionalInterface : additionalInterfaces) { this.advised.addInterface(additionalInterface); } } // Validate the class, writing log messages as necessary. // 验证 Class validateClassIfNecessary(proxySuperClass, classLoader); // Configure CGLIB Enhancer... Enhancer enhancer = createEnhancer(); if (classLoader != null) { enhancer.setClassLoader(classLoader); if (classLoader instanceof SmartClassLoader && ((SmartClassLoader) classLoader).isClassReloadable(proxySuperClass)) { enhancer.setUseCache(false); } } enhancer.setSuperclass(proxySuperClass); enhancer.setInterfaces(AopProxyUtils.completeProxiedInterfaces(this.advised)); enhancer.setNamingPolicy(SpringNamingPolicy.INSTANCE); enhancer.setStrategy(new ClassLoaderAwareGeneratorStrategy(classLoader)); // 设置拦截器 Callback[] callbacks = getCallbacks(rootClass); Class<?>[] types = new Class<?>[callbacks.length]; for (int x = 0; x < types.length; x++) { types[x] = callbacks[x].getClass(); } // fixedInterceptorMap only populated at this point, after getCallbacks call above enhancer.setCallbackFilter(new ProxyCallbackFilter( this.advised.getConfigurationOnlyCopy(), this.fixedInterceptorMap, this.fixedInterceptorOffset)); enhancer.setCallbackTypes(types); // Generate the proxy class and create a proxy instance. // 生成代理类以及创建代理 return createProxyClassAndInstance(enhancer, callbacks); } catch (CodeGenerationException | IllegalArgumentException ex) { throw new AopConfigException("Could not generate CGLIB subclass of " + this.advised.getTargetClass() + ": Common causes of this problem include using a final class or a non-visible class", ex); } catch (Throwable ex) { // TargetSource.getTarget() failed throw new AopConfigException("Unexpected AOP exception", ex); } }