在文章 Spring AOP 处理流程概述 中,对 Spring AOP 有了一个整体认识。在文章 Spring AOP 源码分析:入门 中,对 Spring AOP 的相关入口做了分析。这篇文章就带大家看一看,Spring AOP 是如何获取通知的?
示例代码 在 如何阅读 Spring 源码?: 示例代码 中,已经给出了一个完整的 AOP 示例代码。为了节省篇幅,请直接参考那篇文章的示例代码,这里就不在赘述。
注册 Advice(通知/增强) 请根据 Spring AOP 源码分析:入门 中提到的关键方法入口处,打上断点,开始调试。
首先,需要明确一点的是:对于切面(使用 @Aspect 注解标注过的类)在 Spring 容器中,也是被统一f封装为 BeanDefinition 实例的,也需要通过一个方式,将其注册到 Spring 容器中。比如,就像 示例代码 那样,通过 ImportSelector 方式,使用类名,将其注册到容器中。这样,就可以利用 Spring 容器对 Bean 的 API 来统一处理了。
Advice(通知/增强)几乎是在意想不到的地方完成注册的:在第一次调用 AbstractAutoProxyCreator#postProcessBeforeInstantiation 方法时,通过 AspectJAwareAdvisorAutoProxyCreator#shouldSkip 方法,完成了切面的注册。下面,我们对这个过程抽丝剥茧,逐步分析。
先来看看 findCandidateAdvisors 方法:
AnnotationAwareAspectJAutoProxyCreator#findCandidateAdvisors @Override protected List<Advisor> findCandidateAdvisors() { // Add all the Spring advisors found according to superclass rules. //当使用注解方式配置AOP的时候并不是丢弃了对XML配置的支持 //在这里调用父类方法加载配置文件中的AOP声明 List<Advisor> advisors = super.findCandidateAdvisors(); // Build Advisors for all AspectJ aspects in the bean factory. if (this.aspectJAdvisorsBuilder != null) { advisors.addAll(this.aspectJAdvisorsBuilder.buildAspectJAdvisors()); } return advisors; }
循环依赖在编程中是一个常见问题(当然,这并不是最佳实践)。并且,Spring 如何解决循环依赖这个问题在面试中也经常见。下面,D瓜哥就从源码的层面深入剖析一下这个问题。
示例程序 先展示一下示例程序:
package com.diguage.truman.context; import org.apache.commons.logging.Log; import org.apache.commons.logging.LogFactory; import org.junit.jupiter.api.Test; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.context.annotation.AnnotationConfigApplicationContext; import org.springframework.context.annotation.Configuration; import org.springframework.context.annotation.Import; import org.springframework.context.annotation.ImportSelector; import org.springframework.core.type.AnnotationMetadata; import org.springframework.stereotype.Component; /** * @author D瓜哥, https://www.diguage.com/ * @since 2020-05-24 13:02 */ public class CircularDependenceSingletonTest { public static final Log log = LogFactory.getLog(CircularDependenceSingletonTest.class); @Test public void test() { AnnotationConfigApplicationContext applicationContext = new AnnotationConfigApplicationContext(); applicationContext.register(Config.class); applicationContext.refresh(); log.info(applicationContext.getBean(A.class)); log.info(applicationContext.getBean(B.class)); log.info(applicationContext.getBean(C.class)); log.info("-A--------"); A a = applicationContext.getBean(A.class); log.info(a); log.info(a.b); log.info("-B--------"); B b = applicationContext.getBean(B.class); log.info(b); log.info(b.c); log.info("-C--------"); C c = applicationContext.getBean(C.class); log.info(c); log.info(c.a); } @Configuration @Import(AbcImportSelector.class) public static class Config { } public static class AbcImportSelector implements ImportSelector { @Override public String[] selectImports(AnnotationMetadata importingClassMetadata) { return new String[]{ A.class.getName(), B.class.getName(), C.class.getName()}; } } @Component public static class A { @Autowired B b; } @Component public static class B { @Autowired C c; } @Component public static class C { @Autowired A a; } } 上述示例代码中的循环依赖情况如下:
图 1. 循环依赖 源码剖析 三级缓存 D瓜哥在 深入剖析 Spring 核心数据结构:BeanFactory 中,概要性地对 BeanFactory 的属性做了一一说明。 而其中的“三级缓存”属性,则是解决循环依赖问题的关键所在:
Map<String, Object> singletonObjects = new ConcurrentHashMap<>(256):Bean 名称到单例 Bean 的映射,用于存放完全初始化好的 Bean。可以理解成,这就是所谓的容器。这是一级缓存。
Map<String, Object> earlySingletonObjects = new HashMap<>(16):Bean 到“未成熟”单例 Bean 的映射。该 Bean 对象只是被创建出来,但是还没有注入依赖。在容器解决循环依赖时,用于存储中间状态。这是二级缓存。
Map<String, ObjectFactory<?>> singletonFactories = new HashMap<>(16):Bean 名称到 Bean 的 ObjectFactory 对象的映射,存放 Bean 工厂对象。在容器解决循环依赖时,用于存储中间状态。这是三级缓存。
Bean 的获取过程就类似计算机缓存的作用过程:先从一级获取,失败再从二级、三级里面获取。在 org.springframework.beans.factory.support.DefaultSingletonBeanRegistry#getSingleton(java.lang.String, boolean) 方法中,可以明确看到整个过程:
org.springframework.beans.factory.support.DefaultSingletonBeanRegistry#getSingleton(beanName, allowEarlyReference) /** * Return the (raw) singleton object registered under the given name. * <p>Checks already instantiated singletons and also allows for an early * reference to a currently created singleton (resolving a circular reference). * @param beanName the name of the bean to look for * @param allowEarlyReference whether early references should be created or not * @return the registered singleton object, or {@code null} if none found */ @Nullable protected Object getSingleton(String beanName, boolean allowEarlyReference) { Object singletonObject = this.singletonObjects.get(beanName); if (singletonObject == null && isSingletonCurrentlyInCreation(beanName)) { synchronized (this.singletonObjects) { singletonObject = this.earlySingletonObjects.get(beanName); if (singletonObject == null && allowEarlyReference) { ObjectFactory<?> singletonFactory = this.singletonFactories.get(beanName); if (singletonFactory != null) { singletonObject = singletonFactory.getObject(); this.earlySingletonObjects.put(beanName, singletonObject); this.singletonFactories.remove(beanName); } } } } return singletonObject; }
在上一篇文章 分布式锁之 Apache Curator InterProcessMutex 中介绍了基于 ZooKeeper 实现的互斥锁。除此之外,还可以实现读写锁。这篇文章就来简要介绍一下 InterProcessReadWriteLock 的实现原理。
老规矩,先看看类的注释:
/** * <p> * A re-entrant read/write mutex that works across JVMs. Uses Zookeeper to hold the lock. All processes * in all JVMs that use the same lock path will achieve an inter-process critical section. Further, this mutex is * "fair" - each user will get the mutex in the order requested (from ZK's point of view). * </p> * * <p> * A read write lock maintains a pair of associated locks, one for read-only operations and one * for writing. The read lock may be held simultaneously by multiple reader processes, so long as * there are no writers. The write lock is exclusive. * </p> * * <p> * <b>Reentrancy</b><br> * This lock allows both readers and writers to reacquire read or write locks in the style of a * re-entrant lock. Non-re-entrant readers are not allowed until all write locks held by the * writing thread/process have been released. Additionally, a writer can acquire the read lock, but not * vice-versa. If a reader tries to acquire the write lock it will never succeed.<br><br> * * <b>Lock downgrading</b><br> * Re-entrancy also allows downgrading from the write lock to a read lock, by acquiring the write * lock, then the read lock and then releasing the write lock. However, upgrading from a read * lock to the write lock is not possible. * </p> */ public class InterProcessReadWriteLock {
对分布式锁耳熟能详。不过,一直关注的是基于 Redis 实现的分布式锁。知道 ZooKeeper 也可以实现分布式锁。但是,原来的想法是把 Redis 那个思路切换到 ZooKeeper 上来实现就好。今天了解到 Apache Curator 内置了分布式锁的实现: InterProcessMutex。查看了一下源码实现,发现跟基于 Redis 实现的源码相比,在思路上还是有很大不同的。所以,特别作文记录一下。
先来看一下,整体流程:
结合流程图和源码,加锁的过程是这样的:
先判断本地是否有锁数据,如果有则对锁定次数自增一下,然后返回 true;
如果没有锁数据,则尝试获取锁:
在指定路径下创建临时顺序节点
获取指定路径下,所有节点,检查自身是否是序号最小的节点:
如果自身序号最小,则获得锁;否则
如果自身不是序号最小的节点,则通过 while 自旋 + wait(times) 不断尝试获取锁,直到成功。
获得锁后,把锁信息缓存在本地 ConcurrentMap<Thread, LockData> threadData 变量中,方便计算重入。
在 ZooKeeper 中的结构大致如下:
下面我们逐个方法进行分析说明。先来看一下 InterProcessMutex 的注释:
/** * A re-entrant mutex that works across JVMs. Uses Zookeeper to hold the lock. All processes in all JVMs that * use the same lock path will achieve an inter-process critical section. Further, this mutex is * "fair" - each user will get the mutex in the order requested (from ZK's point of view) */ public class InterProcessMutex implements InterProcessLock, Revocable<InterProcessMutex>