问题 什么是大页(Large Page)?什么是透明大页(Transparent Huge Page)?它对我有什么帮助?
理论 虚拟内存现在已被视为理所当然。现在只有少数人还记得,更不用说做一些“真实模式”编程了,在这种情况下,你会接触到实际的物理内存。相反,每个进程都有自己的虚拟内存空间,该空间被映射到实际内存上。例如,两个进程在相同的虚拟地址 0x42424242 上拥有不同的数据,而这些数据将由不同的物理内存支持。现在,当程序访问该地址时,应将虚拟地址转换为物理地址。
图 1. 虚拟内存地址与物理内存地址之间的关系 这通常由操作系统维护 “页表”,硬件通过“页表遍历”来实现地址转换。如果在页面粒度上维护翻译,整个过程就会变得简单。但这样做的成本并不低,而且每次内存访问都需要这样做!因此,还需要对最新的翻译进行小型缓存,即 转译后备缓冲区(Translation Lookaside Buffer (TLB))。TLB 通常很小,只有不到 100 个条目,因为它的速度至少要与 L1 缓存相当,甚至更快。对于许多工作负载来说,TLB 未命中和相关的页表遍历需要大量时间。
既然我们无法将 TLB 做得更大,那么我们可以做其他事情:制作更大的页面!大多数硬件有 4K 基本页和 2M/4M/1G “大页”。用更大的页来覆盖相同的区域,还能使页表本身更小,从而降低页表遍历的成本。
“JVM 剖析花园”是由 JVM 研发专家及性能极客 Aleksey Shipilëv 撰写的一个系列文章,专门介绍一些有关 JVM 的基本知识。笔者也是前几年无意间发现的一片宝藏文章。早就有翻译过来,介绍给大家的想法,可惜一直未能付诸实践。最近在查资料时,无意间又翻到了这个系列,遂下定决心,完成这个萌发已久的小想法。
为了便于理解,对该系列的名字做了微调,原文是“JVM Anatomy Quarks”,将原文的“Quarks”(夸克)翻译为了“花园”。
“JVM 解剖花园”是一个正在进行中的小型系列文章,每篇文章都会介绍一些有关 JVM 的基本知识。这个名字强调了一个事实,即单篇文章不能孤立地看待,这里描述的大部分内容都会很容易地相互影响。
阅读这篇文章大约需要 5-10 分钟。因此,它只针对单一主题、单一测试、单一基准和单一观察进行深入探讨。这里的证据和讨论可能是轶事,并没有对错误、一致性、写作风格、语法和语义错误、重复或一致性进行实际审查。请自行承担使用和/或信任的风险。
以上是该系列介绍。这里介绍一次,后续文章不再赘述。 问题 众所周知,Hotspot 可以进行 锁粗化优化,有效合并多个相邻的锁定块,从而减少锁定开销。它能有效地对如下代码做优化:
当今世界被广泛浪费的资源之一是:内存。由于编程效率低下,内存浪费量惊人(有时 "令人震惊")。我们在多个企业应用程序中都看到了这种情况。为了证明这一点,我们进行了一项小型研究。我们分析了著名的 Spring Boot Pet Clinic 应用程序,看看它浪费了多少内存。该应用程序由社区设计,旨在展示如何使用 Spring 应用程序框架构建简单但功能强大的面向数据库的应用程序。
环境 Spring Boot 2.1.4.RELEASE
Java SDK 1.8
Tomcat 8.5.20
MySQL 5.7.26 with MySQL Connector/J 8.0.15
压力测试 我们使用流行的开源压力测试工具 Apache JMeter 进行压力测试。我们使用以下设置执行了 30 分钟的压力测试:
线程数(用户)- 1000(连接到目标的用户数量)
上升周期(秒) - 10。所有请求开始的时间范围。根据我们的配置,每 0.01 秒将启动 1 个新线程,即 100 个线程/秒。
循环次数 - 永久。这 1000 个线程将背靠背执行测试迭代。
持续时间(秒) - 1800。启动后,1000 个线程持续运行 1800 秒。
当对垃圾回收性能做调优时,不仅能改善垃圾回收暂停时间,还能改善整个应用程序的响应时间并降低云计算成本。最近,我们帮助调整了一个流行应用程序的垃圾回收行为。仅仅是一个微小的改动,就带来了巨大的改善。让我们在这篇文章中讨论一下这个垃圾回收调整的成功案例。
垃圾收集关键绩效指标 有句名言叫“无法衡量的东西就无法优化”。说到垃圾回收的调整,您只需关注 3 个主要关键绩效指标 (KPI):
GC 暂停时间
GC 吞吐量
CPU 消耗量
垃圾回收运行时,会暂停应用程序。“GC 停顿时间”表示应用程序在垃圾回收事件中停顿的时间。该指标以秒或毫秒为单位。
“GC 吞吐量”表示应用程序处理客户事务的总时间与处理垃圾回收活动的总时间之比。该指标以百分比为单位。例如,如果有人说他的应用程序的 GC 吞吐量是 98%,这表明该应用程序有 98% 的时间用于处理客户活动,其余 2% 的时间用于处理垃圾回收活动。
即使是处理一个简单的请求,现代应用程序也会创建成千上万个对象。因此,垃圾收集器必须在后台不断运行,以释放为每个请求创建的成千上万个对象。因此,垃圾回收往往会消耗大量的 CPU。因此,在调整垃圾回收性能时,还应研究 CPU 消耗。要了解有关这些 KPI 的更多信息,请参阅: 内存调整: 关键性能指标。
如何获取这些 KPI? 在调优垃圾回收性能时,垃圾回收日志是您最好的朋友。您可以通过 这篇文章 给出的 JVM 参数在应用程序中启用垃圾回收日志。建议始终开启垃圾回收日志,因为它能提供丰富的信息,有助于预测中断、排除生产问题并帮助进行容量规划。此外,启用垃圾收集不会给应用程序增加任何明显的开销。
应该在内存容量大的少量实例(即机器)上运行应用程序,还是在内存容量小的大量实例上运行应用程序?哪种策略是最佳的?这个问题可能会经常遇到。在开发应用程序长达 20 年,且构建了 JVM 性能工程/故障排除工具( GCeasy、 FastThread,、 HeapHero)之后,我仍然不知道这个问题的正确答案。同时,我相信这个问题也没有非黑即白的答案。在本文中,我想与大家分享一下我对这个问题的看法和经验。
两个数十亿美元企业的故事 由于我们的 JVM 性能工程/故障排除工具已广泛应用于各大企业,因此我有机会看到世界级企业应用的实际实施情况。最近,我有机会参观了两家高速成长的科技公司(如果我说出他们的名字,读这篇文章的人都会知道)。这两家公司的总部都在硅谷。它们的业务是技术,因此在工程设计方面很有一套。它们是华尔街的宠儿,享有极高的估值。它们的市值高达数十亿美元。它们是现代企业蓬勃发展的典型代表。在我们的对话中,让我们称这两家企业为公司 A 和公司 B。
在内存大小方面,两家企业都采用了两个极端,这让我感到非常惊讶。公司 A 将堆大小(即 -Xmx)设置为 250GB,而公司 B 则将堆大小设置为 2GB:公司 A 的堆大小是公司 B 的 125 倍。两家公司都对自己的内存大小设置很自信。俗话说:"事实胜于雄辩",两家企业都在扩大规模,处理数十亿的关键业务交易。
两家公司都从事相同的业务,收入/市值大致相同,位于同一地理区域,在同一时间点采用两种极端的内存大小,这真是一次绝佳的体验。鉴于这种现实生活中的真实经验,正确的答案是什么?大内存还是小内存?我的结论是:如果你有一支优秀的团队,采用这两种策略都能取得成功。
大内存容量可能很昂贵 与内存容量小、实例数量多的情况相比,内存容量大、实例(即机器)数量少的情况往往成本较高。以下是基于美国东部(弗吉尼亚州北部)地区 AWS EC2 实例成本的简单计算:
三四十年前,开发人员负责释放在应用程序中创建的对象。业务应用程序相当复杂,有不同的工作流、用例和场景。即使开发人员在某个场景中少释放一个对象,对象也会在内存中累积,造成内存泄漏。Java 于 1995 年推出时,承诺自动进行垃圾回收。它将删除对象的责任从开发人员转移到了 Java 虚拟机(JVM),从而彻底改变了内存管理。整个行业都积极拥抱了这一创新理念,因为开发人员不再需要操心手动内存管理。从那时起,自动垃圾回收已成为所有现代编程语言的默认功能。
在本篇文章中,我们将探讨垃圾回收过程中的一个关键性能指标:"GC 吞吐量"。我们将了解它的含义、在 Java 应用程序中的重要性以及它对整体性能的影响。此外,我们还将深入探讨提高 GC 吞吐量的可行策略,为现代软件开发释放其优势。
什么是垃圾回收吞吐量? 每当运行自动垃圾回收事件时,应用程序都会停顿,以识别内存中未引用的对象并将其释放。在停顿期间,不会处理任何客户请求。垃圾回收吞吐量请求应用程序处理客户请求的时间占多大比例,垃圾回收活动的时间占多大比例。例如,如果有人说他的应用程序的 GC 吞吐量是 98%,这意味着他的应用程序有 98% 的时间用于处理客户请求,其余 2% 的时间用于处理垃圾回收活动。 高 GC 吞吐量是可取的,因为它表明应用程序有效地利用了系统资源,从而减少了停顿,提高了整体性能。相反,GC 吞吐量低会导致垃圾回收停顿时间增加,影响应用程序的响应速度,造成性能瓶颈。监控和优化 GC 吞吐量对于确保应用程序的顺利执行和响应速度至关重要。在下一节中,我们将探讨查找应用程序 GC 吞吐量的方法,并了解如何解释结果以优化 Java 应用程序性能。继续…
如何找到应用程序的 GC 吞吐量? 垃圾回收日志是研究 GC 性能的最佳来源。如果你的应用程序运行在 JVM 上,你可以通过 如何进行 GC 日志分析 文章中提到的 JVM 参数启用 GC 日志。启用 GC 日志后,让应用程序处理流量至少一天,以观察高流量和低流量时段各自的运行情况。之后,可以将生成的 GC 日志文件上传到 GC 日志分析工具,以获得有价值的分析结果。一些常用的 GC 日志分析工具包括 GCeasy、 IBM GC & Memory visualizer 和 Google Garbage cat 等。这些工具将报告 GC 吞吐量以及其他重要的 GC 指标。下面是 GCeasy 工具的摘录,展示了包括 GC 吞吐量在内的各种 GC 关键性能指标 (KPI) 报告。
ZGC 是一种专门的垃圾回收器,主要用于管理大型堆和尽量减少 Java 应用程序中的停顿。它能应对在内存密集型工作负载和一致的响应时间至关重要的情况下的垃圾回收的挑战。ZGC 利用并发处理能力和先进的算法,为优化现代 Java 应用程序的性能提供了有效的解决方案。在本篇文章中,将专门探讨调整 ZGC 以提高性能的技术。不过,如果想了解更多基础知识,可以观看在 JAX 伦敦会议上发表的 垃圾回收调优 讲座。
如何启用 ZGC? 确保使用的 Java 版本支持 ZGC。OpenJDK 从 JDK11 开始支持 ZGC。在启动应用程序时添加以下 JVM 参数,这样就可以在 Java 应用程序中启用 ZGC 垃圾收集器:
# D瓜哥 · https://www.digauge.com -XX:+UseZGC -XX:+ZGenerational (1) 1 D瓜哥注:分代 ZGC 从 OpenJDK 21+ 开始支持。